High-resolution Cluster Simulation - Ramses Sciences at Yonsei 2018 -

Sukyoung K. Yi

Dubois et al. 2018 sub.

z = 4.0

z = 3.0

z = 1.0 $M_* = 6.25 imes 10^{10} M_{\odot}$

$$V/\sigma = 9.47$$

Dubois et al. 2018 sub. total

face-on

-2

-4

0

Z [kpc, physical]

2

All Stars in an exampled disk-dominated (D/T>0.5) galaxy insitu SF merger

Minjung Park in prep

Minjung Park in prep Origin of the structures of galaxies Measured at z=0.7

Massive galaxies

As z decreases

53 (33% of total sample)

Yonsei Zoom-in Cluster Simulation (YZiCS)

- RAMSES (AMR, Teyssier 2002)
- KISTI 10M Chr
- Baryon recipes: SF, SN, AGN FB (HAGN: Dubois et al. 2014)
- 16 clusters in 200Mpc/h
- $13.5 < \log M/M_{\odot} < 15.0$
- dm*=4e5
- dm_{DM}=8e7
- dx = 0.76 kpc/h
- C.f. Bahe et al. 2013 (Gadget3, dm_g~1e6, dx~1, noAGN, n~30 above 13.5)
- C.f. Barnes et al. 2017 (Gadget3, dm_g~2e6, dx~1, AGN, n~30 above 14)

200Mpc/h

- Choi & Yi 2017, ApJ, 837, 68 "Galaxy spin evolution in clusters"

- analysis"

oapers YZ:CS

• Smith et al. 2016, ApJ, 833, 109 "Tidal stripping of DM and stars in galaxies"

• Rhee et al. 2017, ApJ, 843, 128 "Phase space analysis: Time since infall"

• Lee et al. 2018, ApJ, 864, 69 "Wobbling galaxy spin axes in dense environments"

Jung et al. 2018, ApJ, in press "SF quenching of cluster galaxies":astro-ph/1809.01684

• Han et al. 2018, ApJ, in press "Preprocessing of dark haloes":astro-ph/1809.02763

• Rhee et al. 2018 ApJ, in prep "SF quenching of cluster galaxies using phase space

Resolution

one sample cluster Gas **R**₂₀₀ 2 Mpc/h

Jung et al. 2018, ApJ, in press: arXiv:1809.01684

97.6
48.8
24.4
12.2
6.1
3.0
1.5
0.70

stripping pressure Ran

Jung et al. 2018, ApJ, in press: arXiv:1809.01684

YZiCS clusters

YZiCS clusters are overly SF-quenched, ET, slow-rating: resolution, AGN, ?

R_{vir} [Mpc] 1.00 2.00 1.50 2.50 1000 10.00 800 [Mpc⁻³ dex⁻¹ 1.00 σ_{Los} [km/s] 600 $\Phi \,/\, {\rm N}_{\rm cluster}$ 0.10 400 YZiCS clusters SDSS clusters 0.01 10¹⁴ 10¹⁵ M_{vir} [M_☉]

Rhee, SKY et al. in prep

C.f. C-Eagle (Barnes et al. 2017) With AGN galaxies are overly gas rich

resolution S

Cluster $z \sim 0.69$ Log $P_{ram}/k_{\rm B}$ [cm⁻³ K] ~ 5.4

Halo center Wind blowing RPS safe zone

10 kpc

Log Σ_{min} [cm⁻²] ~ 20.5

97.66 kpc/h 48.83 kpc/h 24.41 kpc/h 12.21 kpc/h 6.1 kpc/h 3.05 kpc/h 1.53 kpc/h

Proposal for High-resolution cluster zoom-in simulation

- high res cluster simulation with NewHorizon specifications
- Tracer particles
- Alternative input ingredients (AGN, CR?)

KISTI Nurion (2018) x85 more capability?

T			
	GEN4	GEN5, Phi	GEN5, CPU
Processor	Xeon X5570 2.93GHz	KNL7250 1.4GHz	Xeon SKL6148 2.4GHz
Cores / Memory	8cores / 24GB	68cores / 96GB	40cores / 192GB
Node	3176	8305	132
Throughput	0.3PF (25,408 cores)	25.3PF (564,740 cores)	0.4PF (5,280 cores)
Total Memory	74TB	778TB	25TB
Interconnection	QDR(40Gbps)	OPI(100Gbps)	OPI(100Gbps)
Feature	SSE	AVX512 (8x)	AVX512 (8x)

"Super-challenge" with Nurion

- Xeon Phi processor, 68core/node ~ 3TF

5PF ~ 1700 nodes ~ 115,600 cores ~ 1700 x 96GB ~ 162TB ~ 7 x mem(NH)*

* mem(NH)=24TB

Ramses and Nurion

- "redundancy problem" of AMR
- "load balancing problem" of Ramses
- Ramses run on Nurion seems inefficient.
- mini Ramses?

- Performance test:
 - 25Mpc volume box, 128³ DM particles, levelmin=7
 - 40 cores, Intel(R) Xeon(R) CPU 3.00GHz
 - Mini-RAMSES forces equipartition of AMR grids

	RAMSES	Mini-RAMSES
Run time	104m 59s	184m 34s
Max. CPU grid	84942 (~0.12GB)	45038 (~0.06GB)

by San Han Test run of mini-Ramses

Ramses: DM and hydro only

mini-Ramses:

(No stars, No cooling)

- Detailed halo structure is \bullet different.
- Two codes may have different \bullet hydrodynamics scheme

Prospect on mini Ramses

- Is this doable?

Is mini-Ramses superior in dealing with load balancing and redundancy?

 We are considering adding astrophysical prescriptions (cooling, SF, BH, FB, chemical enrichment, etc.) into mini-Ramses. Any duplicated effort?