

Ramses User Meeting - Lyon - 2018

Cosmological Milky-way like galaxies: trying different baryonic physics schemes The (french) astroparticles and Dark matter connexion

Arturo Núñez-Castiñeyra

Supervisors: Emmanuel Nezri Vincent Bertin Collaborators: Julien Devriendt (Oxford) Thomas Lacroix (Montpellier) Jullien Lavalle (Montpellier) Pol Mollitor (Luxembourg) Martin Stref (Montpellier)

What we need:

The Milky Way Cosmological Simulation

What we need:

What we need:

Observations

Low res (Δx =150-300 pc) Delayed cooling SF0

Stellar to Halo Mass Ratio

Total mass:

Mass inside 17 kpc :

M(r<17kpc)

Fire2 recipe: M(r<r(M=M(3xr(M=M(r<R97)/2))/2))

Footnote 9: "We define central stellar mass as in Table 1 iteratively by first measuring the half-mass radius of all stars within a large cut (inside 15% of Rvir), then taking all stars within 3× this radius (and then re-defining the half-stellar mass radius on these stars)"

arxiv:1702.06148

Maybe selecting smaller halos than 1x10¹² Msun...

The same questions again

- Sub grid physics:
 - Turbulent star formation (SF1) vs "Classical" star formation (SF0)
 - Mechanical Feedback (kimm et all 2015) vs Delayed Cooling (Teyssier et al 2013)
- Their effect in the final galaxy at z=0
 - SHMR
 - Rotation curves
 - Galaxy morphology
 - DM features ...

• Non-polytropic approach We do not impose a Temperature floor. (Kravstov)

So how do we search for the MW-like Haloes

HAST is a python rutine writen by https://bitbucket.org/vperret/hast/ Valentin Perret **MUSIC Zoomed initial Ramses Unigrid** conditions Ramses Zoom in **DMO** or hydro 1.0 1.0 25000 0.8 0.8 20000 0.6 0.6 15000 × 0.4 0.4 10000 0.2 0.2 5000 0.0 0.0 0.0 0.2 0.6 0.8 1.0 0.0 0.2 0.6 0.8 1.0 5000 10000 15000 20000 25000

With HAST...

So how do we search for the MW-like Haloes

z=91.59

DMO Mochima Halo 2

With HAST...

https://bitbucket.org/vperret/hast/

- Mass (0.5-1 x 10¹² Msun)
- Environment
- Merger history

All this you can do before adding gas and subgrid physics... and realizing is not a disc

Preliminary results (Low resolution)

We have so far 2 candidates plus 1 galaxy previously simulated:

Preliminary results (High res)

We aim to:

- At least three candidates..more to come
- Δx=30 pc
- Boxsize = 12-36 Mpc
- Halo $M_{200} = 0.5 1 \times 10^{12} \text{ Msun}$
- Mdm = 1.6×10^5
- Chabrier IMF

All the combinations of turbulent star formation, classical star formation, with Mechanical feedback or Delayed cooling

Astroparticles and Dark Matter connexion

- Milky-way sized simulations = framework for astroParticle
- Need to have educated use (DM profile choice, DM phase space)

Astroparticles and Dark Matter connexion

• Gamma Rays and Cosmic Rays

Gamma Rays from DM-annihilations propagated through gas and CR Diffuse galactic emissions from SN-Feedback interaction with Gas in Halo B from Pol Mollitor PhD thesis 2014 at Laboratoire d'Astrophysique de Marseille. Coming soon with the new sims.

Astroparticles and Dark Matter connexion

Dark Matter direct detection

$$\frac{d\mathcal{R}}{dE} \propto \int_{vmin}^{v_{esc}} d^3 \vec{v} \; \frac{f(v)}{v}$$

• Dark Matter indirect detection (Capture by the Sun)

$$\frac{dC}{dV} \propto \int_0^{v_{esc}} du \frac{f(u)}{u} \Omega(Q)$$

You can compare with predictions Gal.Dynamics models. Upcoming publication on the Eddington inversion (see next slide) in collaboration with T. Lacroix , J. Lavalle , E. Nezri (in the room) and M. Stref

Again one halo might not be enough..

Astroparticles and Dark Matter connexion

0.2

0.4

 \mathcal{E}/Ψ_{max}

0.0

0.8

1.0

0.6

• Eddington inversion (as in Lacroix et al 2018) and its validation with Cosmological Simulations from

10-8

-0.2

Conclusions

No conclusions yet, results are on the ways..

• Educated use of Simulations and the extrapolations of its results to experiments

WKBL, a python library for post-processing Cosmological Zoom-in Ramses Simulation focusing on DM distributions.

Thanks..

Mochima

Adicora