Why do extremely massive disk galaxies exist?

Sugata Kaviraj, Ryan Jackson, Garreth Martin

RUM 2018

 Around 10% of massive galaxies (M > 10^{11.5} MSun) are disks

Martin +18, MN, 474, 3140

Around 10% of massive galaxies (M > $10^{11.5}$ MSun) are disks

۰

Kaviraj +17, MN, 467, 4739

- Around 10% of massive galaxies (M > 10^{11.5} MSun) are disks
- Velocity fields show clear rotation

- Around 10% of massive galaxies (M > 10^{11.5} MSun) are disks
- Velocity fields show clear rotation
- But massive galaxies have rich merger histories
- And mergers destroy disks and create spheroids...

Martin +18, MN, 474, 3140

$\log_{10}(M_{\star}/M_{\odot})$	z of largest (i)	ratio of largest (ii)	# major (iii)	# minor (iv)	ex situ mass (v)
10.5–11.0	$1.224(1.092)^{+0.509}_{-0.341}$	$2.864(2.485)^{+0.996}_{-0.238}$	1.178 ± 0.921	1.118 ± 1.063	$0.412(0.401)^{+0.089}_{-0.070}$
	$1.169(1.027)^{+0.614}_{-0.396}$	$3.249(2.719)^{+1.413}_{-0.444}$	0.726 ± 0.803	0.816 ± 0.872	$0.201(0.176)^{+0.091}_{-0.050}$
11.0–11.5	$1.203(1.027)^{+0.488}_{-0.322}$	$2.815(2.367)^{+0.978}_{-0.284}$	1.355 ± 1.032	1.504 ± 1.185	$0.542(0.533)^{+0.078}_{-0.061}$
	$1.121(0.968)^{+0.601}_{-0.364}$	$3.244(2.679)^{+1.291}_{-0.419}$	0.946 ± 0.981	1.150 ± 1.052	$0.336(0.321)^{+0.093}_{-0.059}$
11.5–12.0	$1.235(1.092)^{+0.520}_{-0.369}$	$3.076(2.523)^{+1.141}_{-0.282}$	1.217 ± 1.114	1.548 ± 1.246	$0.609(0.597)^{+0.081}_{-0.067}$
	$0.901(0.632)^{+0.573}_{-0.538}$	$2.210(2.099)^{+0.538}_{-0.128}$	1.238 ± 0.921	1.714 ± 1.201	$0.536(0.555)^{+0.070}_{-0.119}$

Massive disks and spheroids share similar merger histories (Martin +18, MN, 480, 2266)

Martin +18, MN, 474, 3140

- Around 10% of massive galaxies (M > $10^{11.5}$ MSun) are disks
- Velocity fields show clear rotation
- But massive galaxies have rich merger histories
- And mergers typically destroy disks and create spheroids...
- So why do such massive disks exist today?

Effect of orbital configuration

Effect of gas fraction on mergers involving spheroids

 Gas-rich mergers tend to produce fast-rotating remnants (e.g. Springel +05, Font +17, Martin +18 and others)

• Could gas be responsible for the existence of today's massive disks?

- Every massive disk shows a recent uptick in v/sigma coincident with a gas-rich merger
- Compare the properties of the last mergers in massive disks to a control sample of last mergers in massive spheroids...

- Last mergers in massive disks:
 - Are more recent

- Last mergers in massive disks:
 - Are more recent
 - Have higher gas fractions

- Last mergers in massive disks:
 - Are more recent
 - Have higher gas fractions
 - Bring in a higher absolute mass of gas

- Last mergers in massive disks:
 - Are more recent
 - Have higher gas fractions
 - Bring in a higher absolute mass of gas
 - Have slightly higher mass ratios

- Last mergers in massive disks:
 - Are more recent
 - Have higher gas fractions
 - Bring in a higher absolute mass of gas
 - Have slightly higher mass ratios
 - Show a slight preference for prograde coplanar orbits

- Massive disks shows similar BH masses to massive spheroids – not surprising since they are rejuvenated spheroids
- They show elevated AGN activity

- Massive discs shows similar BH masses to massive spheroids – not surprising since they are rejuvenated spheroids
- They show elevated AGN activity
- ...and many inhabit dense environments
- Could they explain observed massive disc galaxies that host double lobed AGN?

Radio AGN in the local universe

Object	Redshift	$L_{1.4GHz}$	Optical	Radio	Ref	
NGC612	0.0298	2×10^{25}	NLRG	FRII	1	
0313-192	0.0671	$1 imes 10^{24}$	NLRG	FRI/DD?	2,3	
J0832 + 0532	0.099	$1.5 imes 10^{24}$	NLRG	FRÍ	4	
3C223.1	0.107	$5.4 imes10^{25}$	NLRG	FRII	$5,\!6$	
J1159 + 5820	0.054	$2.3 imes 10^{24}$	WLRG	FRII/DD	7,4	
3C236	0.1007	$1.0 imes10^{26}$	NLRG	FRII/DD	8	
3C293	0.0450	$2 imes 10^{25}$	WLRG	FRII?/DD	9,4	
3C305	0.0416	$1.2 imes 10^{25}$	NLRG	CSS	10, 11	
Speca	0.1378	$7 imes 10^{24}$	WLRG	FRII?/DD	12	
J1649 + 26	0.055	1×10^{24}	WLRG	FRII	14,4	
PKS1814-637	0.0641	$1.2 imes 10^{26}$	NLRG	CSS	13	
J23345-0449	0.0755	$3 imes 10^{24}$	WLRG	FRII/DD	15	

Table 4 Radio AGN showing clear disk and/or spiral morphologies in optical images. Reference key: 1. Emonts et al. (2008); 2. Ledlow et al. (2001); 3. Keel et al. (2006); 4. Singh et al. (2015); 5. de Koff et al. (2000); 6. Madrid et al. (2006); 7. Kozieł-Wierzbowska et al. (2012); 8. O'Dea et al. (2001); 9. van Breugel et al. (1984); 10. Sandage (1966); 11. Heckman et al. (1982); 12. Hota et al. (2011); 13. Morganti et al. (2011); 14. Mao et al. (2015); 15. Bagchi et al. (2014). The radio luminosities in column 3 are in units of W Hz⁻¹. Columns 4 and 5 give the optical spectroscopic and radio morphological classification respectively, with uncertain classifications indicated by a question mark; a DD designation in column 5 indicates a double-double source.

Tadhunter 2016

35

Other questions we are exploring now:

• Do the mergers spin up the whole system or create a new fast-rotating component?

Other questions we are exploring now:

- Do the mergers spin up the whole system or create a new fast-rotating component?
- Does the frequency of extremely massive disks correlate with gas fraction of the Universe?

Summary

Ryan Jackson, Garreth Martin et al. in prep.

- Around 10% of extremely massive galaxies host significant disc components
- These galaxies are initially spheroids
- ...but have recent gas-rich mergers -> disc rejuvenation
- Many inhabit dense environments (large groups and clusters)
- Explains powerful double-lobed AGN in disc galaxies reported in the observational literature?
- Gas-rich mergers regulate the morphological mix of the Universe at the highest stellar masses