Numerical simulations of photoevaporating molecular clumps

Numerical simulations of photoevaporating molecular clumps

Davide Decataldo

In collaboration with: A. Ferrara, S. Gallerani, A.Pallottini, L.Vallini

Davide Decataldo, Scuola Normale Superiore

Lyon, RUM, 18.09.2018

Photoevaporation of molecular clumps

$$n_{\rm cl}R_{\rm cl} \le N_0$$

Sudden photodissociation

Davide Decataldo, Scuola Normale Superiore

 H_2

FUV - UV

Lyon, RUM, 18.09.2018

Effect of radiation on clump structure

Decataldo et al. 2017

Effect of radiation on clump structure

Coupling Ramses-RT and Krome

Every RT time-step:

Physical model

9 Chemical Species

Chemical network: 53 reactions (9 photoreactions) + cosmic rays

3D simulation of photoevaporating clumps

Davide Decataldo, Scuola Normale Superiore

Radiation field in the simulation

t=1.02e+03 yr

Clump dynamics

Davide Decataldo, Scuola Normale Superiore

Lyon, RUM, 18.09.2018

Changing G₀

• faster photoevaporation

Changing G₀

- Higher G₀ induces
- higher density in the center
 - faster photoevaporation

Conclusions

Simulations with on-the-fly RT and complex chemical network

Accurate treatment of photoevaporation

Triggered star formation

Molecular outflows in AGNs