Globular cluster ISM: how to get rid of it? William Chantereau (LJMU-Liverpool) Pawel Biernacki (Zurich) - Marie Martig (LJMU) - Nate Bastian (LJMU) RUM 2018 - Lyon

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Galactic Globular clusters

Help to constrain:

- Star formation/assembly histories of the host galaxy
- Early chemical evolution of galaxies
- Distribution of dark-matter in present-day galaxies
- Stellar evolution models

The single stellar population paradigm is no more valid!

- ~150 globular clusters in the Galaxy
- $\cdot\,$ Mass up to a few ~10^6 M_{\odot}
- · -0.5 < [Fe/H] < -2.5
- 9-13 Gyr
- r_h ~ 5 pc; r_t ~ 50 pc
- Up to 10⁶ stars/pc³ in the center

Galactic Globular clusters

the central 2.5 pc (Freire et al., 2001)

Galactic Globular clusters ICM observations

Observations in a large number of globular clusters

Dust

- ~ 5 x 10⁻⁴ M_{\odot} of dust in the core of M15/NGC7078 (Evans et al., 2003)
- ~ 9 x 10⁻⁴ M $_{\odot}$ of dust in the core of M15 (Boyer et al., 2006)

Neutral gas

• ~ 0.3 M_{\odot} of neutral hydrogen in the core of M15 (van Loon et al., 2006)

lonised gas

- ~ 0.1 M_{\odot} of plasma within 2.5 pc of 47 Tuc (*Freire et al., 2001*)
- ~ 0.023 M_{\odot} of plasma within 1 pc of 47 Tuc (Abbate et al., 2018)

• Ram pressure stripping by the Galactic disc crossing. *Only every 10⁸-10⁹ yr.*

- Flare stars mass loss heating the intracluster gas (Coleman & Worden, 1977). Flaring properties, numbers and distribution of M-dwarfs within GCs are highly uncertain.
- Hot horizontal branch stars (Vandenberg and Faulkner, 1977). 1D hydrodynamical simulations, however these stars are not present in all GCs.
- Classical novae explosions (Scott and Durisen, 1978; Moore and Bildsten, 2011). Novae much less
 common than previously thought, axisymmetric outflows, thus less efficient at removing gas from the cluster
 potential, especially in the most massive ones.
- Pulsar winds (Spergel, 1991). Model briefly investigating the energy requirement for lifting gas from a GC potential well (e.g. no study on the transmission of the energy to the ICM).
- X-ray bursters (Yokoo & Fukue, 1992). Model briefly investigating the energy requirement for lifting gas from a GC potential well.
- Stellar wind heating the intracluster gas (Smith, 1999; Naiman et al. 2018). 1D hydrodynamical simulations including only mass and energy input from stellar winds.
- Accretion onto stars (Thoul et al., 2002).

•

- Stellar collisions (Umbreit et al., 2008). Collisions too infrequent to clear ICM in time-scales of the order of ~Myr (required for some GCs).
- Fast winds (Smith et al., 2004: Dupree et al., 2009). Only 40% of the outflows have sufficient speed as to allow escape of material from the globular cluster.
- Ram pressure stripping by Galactic halo medium (Frank & Gisler, 1976: Priestley et al., 2011). Cannot effectively strip material from the most massive clusters.
- Accretion onto compact stellar remnant (Leigh et al., 2013).
- UV radiation from WDs (McDonald & Ziljstra, 2015).

GCs motion through the Halo

(Priestley et al. 2011)

3D hydrodynamical simulations: discrete multi-mass stellar population

- Neglect N-body calculations
- $v_{GC} = 200 \text{ km s}^{-1}$, $\rho_{H} = 10^{-27} \text{ g.cm}^{-3}$, $T_{H} = 10^{5.5} \text{ K}$, $\alpha = 1 \times 10^{-19} \text{ s}^{-1}$
- Can strip the ICM of a $10^5~M_\odot~GC$
- + Predict a detectable medium for a 10 6 M_{\odot} GC

Discrete multi-mass stellar population mandatory

Needs an additional mechanism to strip the ICM of massive GCs

(McDonald et al. 2015)

Analytical study of the ionising flux produced by post-AGB stars and WDs in 47 Tuc:

- Recombination rate of hydrogen in the cluster + M_{loss} by the GC
- 1.6 x 10⁴⁴ ionising photons s^{-1} for ionisation of the ICM

High energy sources

- γ -ray pulsars: ~9 x 10³¹ ionising photons s⁻¹
- Brightest X-ray sources: ~9 x 10³¹ ionising photons s⁻¹

UV sources

- B8, bright post-AGB star: 4 × 10⁴¹ ionising photons.s⁻¹
- **UIT-14**: 1×10^{44} 5×10^{45} ionising photons.s⁻¹
- AKO9, WD: 3 × 10⁴⁴ ionising photons.s⁻¹
- *KDM5*, WD: 8 × 10⁴³ ionising photons.s⁻¹

(McDonald et al. 2015)

Summary:

- Each WD can ionise all the material injected into the cluster by stellar winds for ~3 Myr
- ~40 such WDs exist at any point
- WDs can continually ionise the observed ICM of 47 Tuc (between 2 × 10⁴⁶ and 8 × 10⁴⁷ ionising photons.s⁻¹)
- Pressure-supported ICM -> expansion over the cluster's tidal radius

Observations:

- ~ 9 x 10⁻⁴ M_{\odot} of dust in the core of M15/NGC7078 (Boyer et al., 2006)
- ~ 0.3 M_{\odot} of neutral hydrogen in the core of M15 (van Loon et al., 2006)
- Neutral cloud in M15? Temporary overdensity?
- · -> Uncertainties on the recombination rate of hydrogen in the cluster
- -> Evolutionary rates of post-AGB stars and early WDs

Project in collaboration with Pawel Biernacki

Parameters for the RAMSES simulation:

- SED from post-AGB stars / WDs
- * $10^6~M_{\odot}$ cluster with Chabrier IMF from 0.08 to ~0.9 M_{\odot}
- Ambient density of 1×10^{-3} H.cm⁻³, T/mu = 1×10^{6} K and Z = 0.005
- $v_{wind} = 20 \text{ km.s}^{-1}, \alpha = 2.55 \times 10^{-12} \text{ M}_{\odot} \text{ .yr}^{-1} \text{ M}_{\odot}^{-1}$
- 120 pc box, resolution of ~0.12 pc
- -> 1.44 x 10^{47} ionising photon.s⁻¹

Project in collaboration with Pawel Biernacki

Early results:

- ICM ionised in less than 0.1 Myr
- Slight diffusion of the ICM after a few Myrs

Next steps:

- More appropriate discret multi-mass stellar population for globular clusters as initial conditions (*LIMEPY, Gieles & Zocchi 2015*)
- SED from atmosphere models
- Changing SED as a function of time and stars
- Motion of the cluster through the Galactic halo (Priestley et al. 2011)

Non standard chemical evolution in globular clusters compared to the Galactic chemical evolution

RGB stars, UVES and GIRAFFE (VLT) Carretta et al. (2009)

General abundance patterns are the result of hydrogen burning at high temperature

CNO cycle above ~15 MK NO cycle above ~20 MK C+N+O mass fraction constant H, ¹⁶O,¹²C,¹²C/¹³C ⁴He,¹³C,¹⁴N NeNa chain above ~25 MK ²³Na ²⁰Ne MgAl chain above ~50 MK ²⁷Al ²⁴Mg

Multiple stellar populations needed, main hypothetical sources:

Intermediate-mass asymptotic giant branch stars (6.5-8 M $_{\odot}$) D'Antona et al. (1983); Ventura et al. (2001); Ventura et al. (2013) Super-massive stars (M > 10000 M $_{\odot}$) Denissenkov and Hartwick (2014); Denissenkov et al. (2015); Gieles et al. (2018) Fast rotating massive stars (25 M $_{\odot}$ < M < 120 M $_{\odot}$) Maeder and Meynet (2006), Prantzos and Charbonnel (2006), Decressin et al. (2007a,b)

The fast rotating massive stars scenario

Matter ejected via slow mechanical/equatorial wind and mixed with ICM to form a disc/ bubble around the star wherein the second population of low-mass stars will form

The multiple populations paradigm

Multiple stellar populations are hotter and brighter

Zaritsky et al. (2015)

Very high far UV-luminosities, 'UV-upturn' phenomenon present in ETGs

The multiple populations paradigm

Present in all most clusters regardless of the environment, questioning the formation of stellar populations in stellar clusters

A dozen of proto-GC in action associated with a few high-z galaxies can produce ~ 20% of the total Lya luminosity observed (*Vanzella et al. 2017, 2018*)

GCs' ICM ionised and diffused by extreme UV sources + ram pressure Halo stripping to get rid of the ICM

- Need to investigate overdensities in GCs
- Hydrodynamical simulations mandatory to understand the multiple populations paradigm and the formation of stellar populations in stellar clusters