Cosmic ray physics in Ramses

Yohan Dubois^{*1}

¹Institut d'Astrophysique de Paris (IAP) – Université Pierre et Marie Curie [UPMC] - Paris VI, INSU, CNRS : UMR7095, Université Pierre et Marie Curie (UPMC) - Paris VI – 98bis, bd Arago - 75014 Paris France, France

Abstract

Cosmic rays (CRs) are now expected to play an important role for shaping the interstellar medium dynamics and chemistry, producing galactic wide outflows and providing non-thermal pressure support in large-scale structures. CRs can be treated as a pressure term in the equations of hydrodynamics with an extra equation evolving their energy. One important aspect of CR physics is that they diffuse anisotropically along magnetic field lines, and I will review the implementation from Dubois & Commerçon 16. Additionally, CRs can stream down their own gradient along magnetic field lines and generate an instability heating the gas (the so-called "streaming instability") and are accelerated at shock interfaces. I will introduce these recent implementations in the Ramses code with the streaming instability modeled as a diffusion plus heating term, and how our shock finder algorithm can produce shock-accelerated CRs.